Non-Convex Global Minimization and False Discovery Rate Control for the TREX
نویسندگان
چکیده
منابع مشابه
Non-convex Global Minimization and False Discovery Rate Control for the TREX
The TREX is a recently introduced method for performing sparse high-dimensional regression. Despite its statistical promise as an alternative to the lasso, square-root lasso, and scaled lasso, the TREX is computationally challenging in that it requires solving a non-convex optimization problem. This paper shows a remarkable result: despite the non-convexity of the TREX problem, there exists a p...
متن کاملPrivate False Discovery Rate Control
We provide the first differentially private algorithms for controlling the false discovery rate (FDR) in multiple hypothesis testing, with essentially no loss in power under certain conditions. Our general approach is to adapt a well-known variant of the Benjamini-Hochberg procedure (BHq), making each step differentially private. This destroys the classical proof of FDR control. To prove FDR co...
متن کاملOptimal weighting for false discovery rate control
How to weigh the Benjamini-Hochberg procedure? In the context of multiple hypothesis testing, we propose a new step-wise procedure that controls the false discovery rate (FDR) and we prove it to be more powerful than any weighted Benjamini-Hochberg procedure. Both finitesample and asymptotic results are presented. Moreover, we illustrate good performance of our procedure in simulations and a ge...
متن کاملOnline Rules for Control of False Discovery Rate and False Discovery Exceedance
Multiple hypothesis testing is a core problem in statistical inference and arises in almost every scientific field. Given a set of null hypotheses H(n) = (H1, . . . ,Hn), Benjamini and Hochberg [BH95] introduced the false discovery rate (FDR), which is the expected proportion of false positives among rejected null hypotheses, and proposed a testing procedure that controls FDR below a pre-assign...
متن کاملOn Online Control of False Discovery Rate
Multiple hypotheses testing is a core problem in statistical inference and arises in almost every scientific field. Given a sequence of null hypotheses H(n) = (H1, . . . ,Hn), Benjamini and Hochberg [BH95] introduced the false discovery rate (FDR), which is the expected proportion of false positives among rejected null hypotheses, and proposed a testing procedure that controls FDR below a pre-a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2018
ISSN: 1061-8600,1537-2715
DOI: 10.1080/10618600.2017.1341414